diketahui panjang ruas garis ab adalah 12 cm
12 cm ÷ 5 = 2,4 cm Jadi kita bagi garis AB tersebut menjadi 5 bagian yang sama yang masing-masing panjangnya adalah 2,4 cm Cara kedua dengan garis bantuan yaitu garis AG sepanjang 5 cm, dengan langkah-langkah sebagai berikut Langkah 1 Buat garis AB sepanjang 12 cm, misal garisnya garis mendatar Langkah 2 Dari titik A, buatlah garis AG dengan ukuran 5 bagian yang sama sedemikian sehingga tidak berimpit dengan garis AB, yaitu AC = CD = DE = EF = FG.
BerartiAD pun akan lebih panjang dari AB, dan demikian seterusnya. Jadi, ruas garis terpendek dari contoh permasalahan di atas yakni ruas garis AB. Dengan begitu dapat kita simpulkan bahwa jarak titik A ke garis g adalah panjang ruas garis AB. Hal ini karena ruas garis AB yaitu ruas garis tegak lurus antara titik A ke garis g.
DiketahuiT.ABC adalah limas segitiga beraturan dengan panjang rusuk alas 12 cm dan panjang rusuk tengah 6√2 cm, serta titik E di tengah rusuk TC. dengan ruas garis AB = BC = 5√2 cm dan TA = 13 cm. Hitunglah jarak titik A ke ruas garis TC… - Rebbosetau Diketahui Limas Segitiga Beraturan T Abc Panjang Ab 6 Cm - Ini Aturannya
PanjangAB = 15 cm, AD = 12 cm dan CB = 6 cm. Panjang AK = 6 cm 9 cm 10 cm 12 cm SI S. Indah Master Teacher Mahasiswa/Alumni Universitas Lampung Jawaban terverifikasi Jawaban jawaban yang tepat adalah C. Pembahasan Segitiga CBK sebangun dengan segitiga ADK, sebab CB Sejajar AD. Akibatnya: Jadi, jawaban yang tepat adalah C. 2rb+ 4.6 (6 rating)
Diketahuikubus ABCD.EFGH dengan panjang rusuk 12 cm. Jarak ruas garis HD dan EG adalah . A. 6 cm B. 6√2 cm C. 6√3 cm D. 8 cm E. 8√2 cm Pembahasan: Jarak ruas garis HD dan EG merupakan ½ garis HF. Perhatikan ilustrasi gambar berikut: Jadi j arak ruas garis HD dan EG adalah 6√2 cm. Jawaban: B ----------------#---------------- Semoga Bermanfaat
Freie Presse Zwickau Er Sucht Sie. Diketahui limas segiempat beraturan dengan ruas garis AB = BC = 5√2 cm dan TA = 13 cm. Hitunglah jarak titik A ke ruas garis TC...Pembahasan Diketahui Panjang ruas garis AB = BC = 5√2 cmPanjang ruas garis A = 13 cmDitanyakan jarak titik A ke ruas garis TC...?Jawab Misal titik tengah garis TC = A',Sehingga kita ilustrasikan soal ke dalam bentuk gambar. Maka Selanjutnya kita perjelas gambar segitiga ABC dari gambar di atas, maka Dari gambar di atas dapat kita cari panjang diagonal dari alas limas segiempat maka AC = √AB² + BC² = √5√2² + 5√2² = √ + = √50 + 50 = √100 = 10 cmSelanjutnya kita akan mencari tinggi limas, yaitu panjang segitiga AOT membentuk segitiga siku-siku, maka kita bisa mencari panjang TO menggunakan teorema = 1/2 AC = 1/2 x 10 = 5 cmTO = √AT² - AO² = √13² - 5² = √169 - 25 = √144 = 12 cmKemudian, kita akan mencari panjang AA' dengan menggunakan perbandingan dua segitiga, maka 1/2 x AC x TO = 1/2 x TC x AA'1/2 x 10 x 12 = 1/2 x 13 x AA'10 x 12 = 13 x AA'120 = 13AA'120/13 = AA'93/13 cm = AA'Jadi, jarak titik A ke ruas garis TC adalah 93/13 pembahasan contoh soal mengenai materi bangun ruang limas segiempat beraturan. Semoga bermanfaat dan mudah untuk dipahami yahh. Semangat dan terimakasih temen-temen.. Advertisement
Blog Koma - Salah satu dalil garis pada segitiga yang tidak kalah penting adalah dalil Stewart. Pada artikel ini kita membahas materi dalil Stewart pada segitiga dan pembuktiannya. Salah satu kegunaan dalil Stewart adalah untuk membuktikan rumus panjang garis berat dan panjang garis bagi sebuah segitiga. Dan untuk mudah dalam membuktikan, silahkan baca tentang dalil proyeksi pada materi "Panjang Garis Tinggi pada Segitiga dan Pembuktiannya". Konsep Dalil Stewart pada Segitiga Dalil Stewart menyatakan hubungan antara sisi-sisi segitiga dengan panjang ruas garis yang menghubungkan titik sudut dengan sisi yang ada dihadapan sudut tersebut. perhatikan gambar segitiga ABC berikut, Jika titik D terletak pada sisi BC pada sigitiga ABC, sehingga panjang $ BD = m , \, DC = n , \, $ dan $ m + n = a , \, $ maka panjang sebarang garis $ AD = d \, $ yaitu $ AD^2 . BC = AC^ + AB^2 . DC - \, $ atau $ \, d^2 . a = b^ + c^2 . n - $ Contoh soal Dalil Stewart pada segitiga 1. Diketahui segitiga ABC dengan panjang sisi-sisinya AB = 4 cm, BC = 8 cm, dan AC = 6 cm. Titik D terletak pada sisi BC dengan BD = 2 cm dan titik E terletak pada sisi AC dengan panjang AE = 4 cm. Tentukan panjang DE? Penyelesaian *. Kita gunakan dalil Stewart. *. Menentukan panjang AD dengan dalil Stewart pada $\Delta$ABC $ \begin{align} AD^2 . BC & = BD. AC^2 + - \\ AD^2 . 8 & = 2. 6^2 + - \\ AD^2 . 8 & = 72 + 96 - 96 \\ AD^2 . 8 & = 72 \\ AD^2 & = 9 \\ AD & = \sqrt{9} = 3 \end{align} $ Sehingga panjang AD = 3 cm. *. Menentukan panjang DE dengan dalil Stewart pada $\Delta$ADC $ \begin{align} DE^2 . AC & = + - \\ DE^2 . 6 & = + - \\ DE^2 . 6 & = 18 + 144 - 48 \\ DE^2 . 6 & = 18 + 96 \\ DE^2 . 6 & = 114 \\ DE^2 & = 19 \\ DE & = \sqrt{19} \end{align} $ Jadi, panjang DE = $\sqrt{19} $ cm. 2. Pada sebuah segitiga ABC, diketahui AB = 8 cm, BC = 7 cm, dan AC = 6 cm. Pada perpanjangan AB terdapat titik D, sehingga BD = 1/2 AD. Hitunglah panjang CD. Penyelesaian *. Karena panjang BD = 1/2 AD, maka BD = AB = 8 cm. *. Gambar ilustrasinya *. Kita terapkan dalil stewart pada segitiga ACD. $ \begin{align} CB^ & = + - \\ 7^ & = + - \, \, \, \, \, \text{bagi 8} \\ & = CD^2 + 36 - \\ 98 & = CD^2 + 36 - 128 \\ 98 & = CD^2 -92 \\ CD^2 & = 190 \\ CD & = \sqrt{190} \end{align} $ Jadi, panjang $ CD = \sqrt{190} \, $ cm. Catatan soal nomor 2 ini bisa diselesaikan menggunakan rumus panjang garis berat. 3. Diketahui sebuah segitiga ABC dengan AC = 8 cm, AB = 6 cm dan BC = 12 cm. Titik D pada AB dan titik E pada AC sehingga ADAB = 13 dan BE = CE. Hitunglah panjang DE! Penyelesaian *. Panjang ADAB = 13 , Panjang $ AD = \frac{1}{3} AB = \frac{1}{3} . 6 = 2 $. Panjang $ DB = \frac{2}{3} AB = \frac{2}{3} . 6 = 4 $. Misalkan panjang $ BE = EC = x , \, $ sehingga $ EA = 8 - x $. *. Ilustrasi gambar segitiga ABC. *. Dalil Stewart pada $\Delta$ABC menentukan panjang BE $x$, $ \begin{align} BE^ & = + - \\ x^ & = + 8-x.12^2 - x.8-x.8 \\ 8x^2 & = 36x + 1152 - 144x - 64x + 8x^2 \\ 172x & = 1152 \\ x & = \frac{1152}{172} = \frac{288}{43} \end{align} $ Sehingga panjang $ BE = x = \frac{288}{43} \, $ cm. Panjang $ EA = 8 - x = 8 - \frac{288}{43} = \frac{56}{43} $ . *. Kita terapkan dalil stewart pada segitiga AEB. $ \begin{align} DE^ & = + - \\ DE^ & = 2.\frac{288}{43}^2 + 4.\frac{56}{43}^2 - \\ DE^ & = 2.\frac{82944}{1849} + 4.\frac{3136}{1849} - 48 \\ DE^ & = \frac{165888}{1849} + \frac{12544}{1849} - 48 \\ DE^ & = \frac{178432}{1849} - 48 \\ DE^ & = \frac{178432}{1849} - \frac{88752}{1849} \\ DE^ & = \frac{89680}{1849} \\ DE^2 & = \frac{89680}{11094} \\ DE & = \sqrt{\frac{89680}{11094}} \\ DE & = \sqrt{\frac{89680}{11094}} \end{align} $ Jadi, panjang $ DE = \sqrt{\frac{89680}{11094}} \, $ cm. 4. Diketahui ada sebuah trapesium. Sisi-sisi sejajar trapesium adalah 16 cm dan 10 cm. Panjang kaki-kakinya 8 cm dan 10 cm. Hitunglah panjang kedua diagonalnya! Penyelesaian *. ilustrasi gambar trapesiumnya. *. Misalkan panjang $ AC = x \, $ dan $ BD = y $ . Misalkan juga $ AE = x_1 , \, EC = x_2, \, DE = y_1, \, EB = y_2 $ dengan $ x_1 + x_2 = x \, $ dan $ \, y_1 + y_2 = y $. *. Segitiga AED sebangun dengan segitiga BEC. Karena sebangun, maka perbandingan sisi yang bersesuaian sama. $ \frac{AE}{EC} = \frac{AD}{BC} \rightarrow \frac{x_1}{x_2} = \frac{10}{16} \rightarrow \frac{x_1}{x_2} = \frac{5}{8} $. Sehingga $ x_1 = \frac{5}{13} x \, $ dan $ x_2 = \frac{8}{13}x $. $ \frac{DE}{EB} = \frac{AD}{BC} \rightarrow \frac{y_1}{y_2} = \frac{10}{16} \rightarrow \frac{y_1}{y_2} = \frac{5}{8} $. Sehingga $ y_1 = \frac{5}{13} y \, $ dan $ y_2 = \frac{8}{13}y $. *. Menerapkan dalil stewart pada segitiga ACD. $ \begin{align} DE^ & = + - \\ y_1^ & = + - \, \, \, \, \, \text{....persi} \end{align} $ *. Menerapkan dalil stewart pada segitiga ACB. $ \begin{align} BE^ & = + - \\ y_2^ & = x_1.16^2 + - \, \, \, \, \, \text{....persii} \end{align} $ *. Eliminasi persi dan persii, $ \begin{array}{cc} y_1^ = + - & \\ y_2^ = x_1.16^2 + - & - \\ \hline xy_1^2 - y_2^2 = -192x_1 & \end{array} $ *. Substitusi nilai $ x_1, y_1 , y_2 $, $ \begin{align} xy_1^2 - y_2^2 & = -192x_1 \\ x\frac{5}{13} y^2 - \frac{8}{13} y^2 & = -192.\frac{5}{13} x \\ x\frac{25}{169} y^2 - \frac{64}{169} y^2 & = -192.\frac{5}{13} x \\ x.\frac{-39}{169} y^2 & = -192.\frac{5}{13} x \\ \frac{39}{169} y^2 & = 192.\frac{5}{13} \\ \frac{3}{13} y^2 & = 192.\frac{5}{13} \\ 3 y^2 & = 192 . 5 \\ y^2 & = \frac{ = 64 . 5 \\ y & = \sqrt{64. 5} = 8 \sqrt{5} \end{align} $ *. Menerapkan dalil stewart pada segitiga ADB. $ \begin{align} AE^ & = + - \\ x_1^ & = + - \, \, \, \, \, \text{....persiii} \end{align} $ *. Menerapkan dalil stewart pada segitiga CDB. $ \begin{align} CE^ & = + - \\ x_2^ & = + - \, \, \, \, \, \text{....persiv} \end{align} $ *. Eliminasi persiii dan persiv, $ \begin{array}{cc} x_1^ = + - & \\ x_2^ = + - & - \\ \hline yx_1^2 - x_2^2 = -156y_1 + 36y_2 & \end{array} $ *. Substitusi nilai $ x_1,x_2, y_1 , y_2 $, $ \begin{align} yx_1^2 - x_2^2 & = -156y_1 + 36y_2 \\ y\frac{5}{13} x^2 - \frac{8}{13} x^2 & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ y\frac{25}{169} x^2 - \frac{64}{169} x^2 & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ y.\frac{-39}{169} x^2 & = -156.\frac{5}{13} y + 36. \frac{8}{13} y \\ \frac{-3}{13} x^2 & = -156.\frac{5}{13} + 36. \frac{8}{13} \\ -3 x^2 & = + 36. 8 \\ -3 x^2 & = -492 \\ x^2 & = 164 \\ x & = \sqrt{164} \end{align} $ Jadi, panjang diagonal-diagonalnya adalah $ 8 \sqrt{5} \, $ cm dan $ \sqrt{164} \, $ cm. 5. Sisi-sisi sejajar sebuah trapesium 6 cm dan 36 cm. Panjang diagonalnya 21 cm dan 28 cm. Hitunglah panjang kaki-kaki trapesium tersebut! Penyelesaian *. Perhatikan ilustrasi gambar di bawah ini. *. Menentukan panjang masing pada trapesium. Diagonal AC = 28 cm, diagonal BD = 21 cm. Sisi-sisi sejajar AD = 6 cm dan BC = 36 cm. *. Segitiga AED sebangun dengan segitiga BEC. $ \frac{AE}{EC} = \frac{AD}{BC} \rightarrow \frac{AE}{EC} = \frac{6}{36} \rightarrow \frac{AE}{EC} = \frac{1}{6} $ Sehingga $ AE = \frac{1}{7} AC = \frac{1}{7}. 28 = 4 \, $ dan $ EC = \frac{6}{7} AC = \frac{6}{7}. 28 = 24 $ . $ \frac{DE}{EB} = \frac{AD}{BC} \rightarrow \frac{DE}{EB} = \frac{6}{36} \rightarrow \frac{DE}{EB} = \frac{1}{6} $ Sehingga $ DE = \frac{1}{7} BD = \frac{1}{7}. 21 = 3 \, $ dan $ EB = \frac{6}{7} BD = \frac{6}{7}. 21 = 18 $ . *. Menerapkan dalil stewart pada segitiga ACD. $ \begin{align} DE^ & = + - \\ 3^ & = + - \\ 252 & = + 864 - 2688 \\ 252 & = - 1824 \\ & = 2076 \\ CD^2 & = \frac{2076}{4} = 519 \\ CD & = \sqrt{519} \end{align} $ *. Menerapkan dalil stewart pada segitiga ACB. $ \begin{align} BE^ & = + - \\ 18^ & = 4.36^2 + - \\ 9072 & = 5184 + - 2688 \\ & = 6576 \\ AB^2 & = 274 \\ AB & = \sqrt{274} \end{align} $ Jadi, panjang kaki-kaki trapesium tersebut adalah $ \sqrt{519} \, $ cm dan $ \sqrt{274} \, $ cm. Pembuktian Dalil Stewart dengan aturan Cosinus Untuk pembuktian pertama ini kita akan menggunakan aturan cosinus. Teori aturan cosinus bisa di baca pada artikel "Penerapan Trigonometri pada Segitiga Aturan Sinus, Aturan Cosinus, Luas Segitiga". *. Panjang untuk sisi masing-masing terlihat pada gambar di atas. khususnya adalah $ m + n = a $. *. Misalkan sudut $ ABD = y \, $ dan sudut $ ADC = x $. Sudut $ x \, $ dan $ y \, $ saling berpelurus, sehingga jumlahnya $ 180^\circ$. $ y + x = 180^\circ \rightarrow y = 180^\circ - x $. Sehingga $ \cos y = \cos 180^\circ - x = - \cos x $. *. Aturan Cosinus pada segitiga ABD, $ c^2 = d^2 + m^2 - .\cos y $ $ \rightarrow c^2 = d^2 + m^2 - .-\cos x $ $ \rightarrow c^2 = d^2 + m^2 + 2dm\cos x \, $ , kalian dengan $ n \, $ kedua ruas $ c^ = d^ + m^ + 2dmn\cos x \, $ ....persi. *. Aturan Cosinus pada segitiga ACD, $ b^2 = d^2 + n^2 - .\cos x \, $ , kalian dengan $ m \, $ kedua ruas $ b^ = d^ + n^ - 2dmn\cos x \, $ ....persii. *. Eliminasi persi dan persii $ \begin{array}{cc} b^ = d^ + n^ - 2dmn\cos x & \\ c^ = d^ + m^ + 2dmn\cos x & + \\ \hline b^ + c^ = d^2m+n + mnm+n & \\ b^ + c^ = d^ + & \\ d^ = b^ + c^ - & \end{array} $ Sehingga terbukti panjang $ AD = d \, $ diperoleh dari rumus $ d^ = b^ + c^ - \, $ atau $ AD^2 . BC = AC^ + AB^2 . DC - $ Pembuktian Dalil Stewart dengan dalil proyeksi Teori dalil proyeksi bisa kita baca pada materi "Panjang Garis Tinggi pada Segitiga dan Pembuktiannya" yang dibagi menjadi dua yaitu dalil proyeksi segitiga tumpul dan dalil proyeksi segitiga lancip. Pada gambar kita proyeksikan garis AD pada garis BD yang hasilnya adalah DE. *. Panjang untuk sisi masing-masing terlihat pada gambar di atas. khususnya adalah $ m + n = a $. *. Dalil proyeksi lancip pada segitiga BAD, $ c^2 = d^2 + m^2 - 2 . m . ED \, $ , kalian dengan $ n \, $ kedua ruas $ c^ = d^ + m^ - 2 . m .n. ED \, $ ....persiii. *. Dalil proyeksi tumpul pada segitiga CAD, $ b^2 = d^2 + n^2 + .ED \, $ , kalian dengan $ m \, $ kedua ruas $ b^ = d^ + n^ + 2 . m .n. ED \, $ ....persiv. *. Eliminasi persiii dan persiv $ \begin{array}{cc} b^ = d^ + n^ + 2 . m .n. ED & \\ c^ = d^ + m^ - 2 . m .n. ED & + \\ \hline b^ + c^ = d^2m+n + mnm+n & \\ b^ + c^ = d^ + & \\ d^ = b^ + c^ - & \end{array} $ Sehingga terbukti panjang $ AD = d \, $ diperoleh dari rumus $ d^ = b^ + c^ - \, $ atau $ AD^2 . BC = AC^ + AB^2 . DC - $ Catatan Seetelah saya mulai menyusun materi yang berkaitan dengan Dalil Stewart, ternyata saya sangat kagum dengan kegunaan dalil ini, tidak hanya untuk membuktikan panjang garis berat dan garis bagi, ternyata bisa juga digunakan untuk membuktikan teorema pythagoras pada segitiga siku-siku. Ini sedikit tantangan untuk kita semua, coba selesaikan beberapa soal berikut ini, i. Coba buktikan teorema pythagaoras menggunakan dali Stewart, silahkan konstruksinya bebas. ii. Buktikan untuk sebarang jajar genjang, berlaku bahwa jumlah kuadrat sisi-sisi diagonalnya sama dengan dua kali jumlah kuadrat sisi-sisinya sejajarnya. Selamat untuk mencoba bagi teman-teman yang tertarik untuk memecahkan masalah di atas.
S EKSPLORASI KONSEP Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian s panjang. Perhatikan gambar berikut. Tentukan nilai p Perhatikan gambar berikut. Tentukan nilai 10 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionUniversity of Southern CaliforniaMath teacherAnswerExplanationFeedback from studentsHelp me a lot 99 Easy to understand 91 Clear explanation 90 Write neatly 54 Correct answer 21 Detailed steps 16 Excellent Handwriting 16 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now
Diketahui kubus dengan panjang rusuk 12 cm. Jarak ruas garis HD dan EG adalah …. A. 6 cm B. 6√2 cm C. 6√3 cm D. 8 cm E. 8√2 cm Pembahasan Jarak ruas garis HD dan EG merupakan ½ garis HF. Perhatikan ilustrasi gambar berikut Jadi jarak ruas garis HD dan EG adalah 6√2 cm. Jawaban B - Jangan lupa komentar & sarannya Email nanangnurulhidayat
Jarak dua titik dalam pelajaran matematika dapat dihitung menggunakan rumus Phythagoras. Foto pembahasan geometri pada pelajaran matematika, perhitungan jarak dua titik tentunya sudah tidak asing dua titik adalah perhitungan yang digunakan untuk mengukur jarak dari suatu titik ke titik lainnya. Perhitungan ini dapat dilakukan dalam mengukur jarak titik pada garis dan suatu jarak antara dua titik dapat dilakukan menggunakan teorema Phythagoras. Untuk memahami teorema Phythagoras dan penggunaannya untuk menghitung jarak dua titik, simak penjelasan di bawah PhythagorasDikutip dari buku Matematika Belajar Ringkas Matematika yang ditulis oleh Ayubkasi Soromi, dkk teorema Phythagoras adalah suatu aturan matematika yang dapat digunakan untuk menentukan panjang salah satu sisi dari sebuah segitiga dari teorema ini diambil dari penemunya, yaitu Phythagoras. Phythagoras adalah seorang ahli matematika dan filsuf yang menyatakan bahwa kuadrat panjang sisi miring pada bangun segitiga siku-siku sama dengan jumlah kuadrat panjang sisi-sisi buku Metode Hafalan Di Luar Kepala Rumus Matematika SMP Kelas 7 oleh Andrian Duratun Kausar dan Andriana Lestari, rumus teorema Phythagoras adalaha sisi a pada segitiga siku-sikub sisi b pada segitiga siku-sikuc hipotenusa sisi miring segitiga siku-sikuJarak Dua TitikMengutip dari buku Matematika yang disusun oleh Betris Hs Nggole, konsep dari jarak dua antara dua titik dapat dipahami melalui gambar dan penjelasan berikut dua titik adalah panjang garis yang menghubungkan kedua titik tersebut. Foto Buku Matematika karya Betris NggolePada gambar tersebut, terdapat dua titik. Dua titik tersebut adalah titik A dan Titik B. Kedua titik tersebut membentuk garis garis g terdapat ruas garis AB. Jarak antara titik A dan titik B ditunjukkan oleh panjang ruas garis AB. Berdasarkan penjelasan tersebut, dapat disimpulkan bahwa jarak antara dua titik adalah panjang ruas garis yang menghubungkan kedua titik Menghitung Jarak Dua Titik dengan Rumus PhythagorasSeperti yang disebutkan sebelumnya, jarak dua titik dapat dihitung menggunakan teorema Pythagoras bila terkait dengan segitiga memahami cara menghitung jarak antara dua titik dengan rumus Phythagoras, simak contoh soal berikut kubus ABCD. EFGH. Foto Buku Matematika karya Betris NggoleDiketahui kubus dengan panjang rusuk 12 cm. Tentukan jarak titik A ke titik kubus garis titik A ke titik C dapat membentuk segitiga. Diketahui bahwa panjang AB 12 cm, sehingga panjang BC adalah 12 mencari panjang garis AC menggunakan rumus PhythagorasMaka panjang garis AC atau jarak antara titik A dan C adalah 12√2 isi teorema Phythagoras?Siapa yang menciptakan teorema Phythagoras?Sebutkan rumus teorema Phythagoras?
diketahui panjang ruas garis ab adalah 12 cm