diketahui dua lingkaran berbeda dengan jarak
2202020Diketahui dua lingkaran berbeda dengan jarak antarpusatnya 10 cm. 1 cm dan 5 cm C. 15 cm dan 25 cm Penyelesaian. Jari-jari lingkaran C dan D berturut-turut 15 cm dan 8 cm. Jika jarak kedua pusat lingkaran tersebut adalah 10 cm dan panjang garis singgung persekutuan dalam kedua lingkaran adalah 8 cm maka manakah pasangan jari-jari kedua lingkaran tersebut yang sesuai.
Adatiga jenis kedudukan dua lingkaran yang dibahas dalam matematika. Sebagaimana yang tertulis dalam buku Modul Workshop Pembelajaran Matematika 1 yang disusun oleh Tim Penulis (2021: 213) yang memaparkan bahwa secara umum, kedudukan dua lingkaran dapat dikelompokkan menjadi tiga jenis, yaitu; dua lingkaran bersinggungan, berpotongan, dan
15 Diketahui dua lingkaran dengan jari-jari berbeda. Jika jarak kedua pusat lingkaran tersebut adalah 17 cm, dan panjang garis singgung persekutuan luarnya adalah 15 cm, maka pasangan jari-jari lingkaran manakah yang sesuai dengan kedua lingkaran tersebut? A. 12 cm dan 3 cm B. 12 cm dan 2 cm C. 10 cm dan 3 cm D. 10 cm dan 2 cm
Diketahuidua lingkaran berbeda dengan jarak antar pusatnya . Jika panjang diameter lingkaran pertama adalah , maka panjang diameter maksimal agar kedua lingkaran tersebut memiliki garis singgung persekutuan dalam adalah OR. O. Rahmawati.
Diketahuidua lingkaran berbeda dengan jarak antarpusatnya 10 cm. Jika panjang diameter lingkaran pertama adalah 8 cm, maka panjang diameter maksimal agar kedua lingkaran tersebut memiliki garis singgung persekutuan dalam adalah . Garis Singgung Persekutuan Dua Lingkaran; GARIS SINGGUNG LINGKARAN; GEOMETRI; Matematika
Freie Presse Zwickau Er Sucht Sie. BerandaDiketahui dua lingkaran berbeda. Jari-jari lingkar...PertanyaanDiketahui dua lingkaran berbeda. Jari-jari lingkaran pertama adalah 15 cm , sedangkan jari-jari lingkaran kedua adalah 8 cm . Jika jarak pusat kedua lingkaran tersebut adalah 25 cm , maka panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah ... cm .Diketahui dua lingkaran berbeda. Jari-jari lingkaran pertama adalah , sedangkan jari-jari lingkaran kedua adalah . Jika jarak pusat kedua lingkaran tersebut adalah , maka panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah ... .FAF. AyudhitaMaster TeacherPembahasanDi bawah ini, merupakan gambar dari garis singgung persekutuan luar kedua lingkaran. Diketahui; Ditanyakan; Jawab; Jadi, panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah .Di bawah ini, merupakan gambar dari garis singgung persekutuan luar kedua lingkaran. Diketahui; Ditanyakan; Jawab; Jadi, panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!7rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ASAisyah Suwitonur Ini yang aku cari! Makasih ❤️AWAnnisa Wasilatu Rohmah Makasih ❤️rnrahma nur aziizah Ini yang aku cari! Bantu banget Makasih ❤️DRDamianus Rizki Septiananda Makasih ❤️ Bantu banget©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
PertanyaanDiketahui dua lingkaran berbeda. Jari-jari lingkaran pertama adalah 19 cm , sedangkan jari-jari lingkaran kedua adalah 10 cm . Jika panjang garis singgung persekutuan luarkedua lingkaran tersebut adalah 40 cm , maka jarak pusat kedua lingkaran adalah .... cm .Diketahui dua lingkaran berbeda. Jari-jari lingkaran pertama adalah , sedangkan jari-jari lingkaran kedua adalah . Jika panjang garis singgung persekutuan luar kedua lingkaran tersebut adalah , maka jarak pusat kedua lingkaran adalah .....Jawabanjarak pusat kedua lingkaran adalah ​ ​ 41 cm ​ . jarak pusat kedua lingkaran adalah .PembahasanIngat bahwa, panjang garis singgung persekutuan luar dua lingkaran memiliki rumus berikut. Oleh karena itu, diperoleh persamaan berikut. d 40 1600 1681 ​ = = = = → ​ p 1 ​ p 2 ​ 2 − r 1 ​ − r 2 ​ 2 ​ p 1 ​ p 2 ​ 2 − 19 − 10 2 ​ p 1 ​ p 2 ​ 2 − 81 p 1 ​ p 2 ​ 2 p 1 ​ p 2 ​ = ± 41 cm ​ Karena jarak tidak mungkin negatif, maka diperoleh p 1 ​ p 2 ​ ​ = ​ 41 cm ​ . Dengan demikian,jarak pusat kedua lingkaran adalah ​ ​ 41 cm ​ .Ingat bahwa, panjang garis singgung persekutuan luar dua lingkaran memiliki rumus berikut. Oleh karena itu, diperoleh persamaan berikut. Karena jarak tidak mungkin negatif, maka diperoleh . Dengan demikian, jarak pusat kedua lingkaran adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!9rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!AWAnnisa Wasilatu Rohmah Makasih â¤ï¸
PertanyaanDiketahui dua lingkaran dengan jari-jari berbeda. Jika jarak kedua pusat lingkaran tersebut adalah 10 cm , dan panjang garis singgung persekutuan dalam kedua lingkaran adalah 8 cm , maka manakah pasangan jari-jari kedua lingkaran tersebut yang sesuai?Diketahui dua lingkaran dengan jari-jari berbeda. Jika jarak kedua pusat lingkaran tersebut adalah , dan panjang garis singgung persekutuan dalam kedua lingkaran adalah , maka manakah pasangan jari-jari kedua lingkaran tersebut yang sesuai? dan dan dan dan FAF. AyudhitaMaster TeacherPembahasanSoal ini menggunakan konsep garis singgung persekutuan dalam pada lingkaran. Dimana cara mencari garis singgung persekutuan dalamlingkaran adalah dengan menggunakan teorema pythagoras. Secara matematis dapat dirumuskan dengan Dalam soal kita dapat mengetahui bahwaDalam soal kita dapat mengetahui bahwa Maka untuk mendapatkan panjang pasangan jari-jarinyaadalah sebagai berikut Jadi, hasil penjumlahan pasangan jari-jari lingkaran adalah , maka pasangan jari-jari yang tepat adalah B. danSoal ini menggunakan konsep garis singgung persekutuan dalam pada lingkaran. Dimana cara mencari garis singgung persekutuan dalam lingkaran adalah dengan menggunakan teorema pythagoras. Secara matematis dapat dirumuskan dengan Dalam soal kita dapat mengetahui bahwaDalam soal kita dapat mengetahui bahwa Maka untuk mendapatkan panjang pasangan jari-jarinya adalah sebagai berikut Jadi, hasil penjumlahan pasangan jari-jari lingkaran adalah , maka pasangan jari-jari yang tepat adalah B. dan Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!5rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!GGrace Carey Uli Pembahasan lengkap banget Makasih â¤ï¸DPDestya Putri Makasih â¤ï¸KaKhesya anaya putri Pembahasan tidak lengkapRResti Pembahasan lengkap bangetVsVhenny simatupangPembahasan lengkap banget
Lingkaran merupakan himpunan titik-titik pada bidang datar yang mempunyai jarak sama terhadap titik tertentu. Jarak yang sama disebut jari-jari lingkaran, dan titik tertentu itu disebut pusat lingkaran. Sebagaimana garis lurus dapat dinyatakan dengan persamaan , lingkaran juga dapat dinyatakan dalam bentuk serupa yang disebut persamaan lingkaran. Daftar Isi Beberapa Teorema Dasar Bentuk Standar Persamaan Lingkaran Bentuk Umum Persamaan Lingkaran Mengubah Bentuk Umum Menjadi Bentuk Standar Contoh Soal Persamaan Lingkaran Referensi Beberapa Teorema Dasar Setidaknya, ada dua teorema dasar yang perlu diketahui dan akan berguna selama mempelajari materi persamaan lingkaran. Teorema pertama digunakan untuk menentukan jarak antara dua titik pada bidang koordinat. Sedangkan teorema kedua digunakan untuk menentukan titik tengah dari sebuah segmen garis. Rumus Jarak Antara Dua Titik Jarak antara titik dan adalah Rumus Titik Tengah Titik tengah dari ruas garis yang menghubungkan titik dan adalah Persamaan lingkaran dapat diturunkan dari definisi lingkaran, dengan memanfaatkan rumus jarak antara dua titik. Persamaan lingkaran ini dapat dibagi menjadi dua bentuk, yaitu bentuk standar dan bentuk umum. Bentuk Standar Persamaan Lingkaran Misalkan adalah titik yang terletak pada lingkaran dengan pusat dan hari-jari . Berdasarkan definisi, titik dan pusat lingkaran mempunyai jarak . Dengan rumus jarak antara dua titik, diperoleh Jika pusat lingkaran berada pada pusat koordinat , maka persamaan lingkaran dapat disederhakan menjadi Bentuk Standar Persamaan Lingkaran Bentuk standar dari persamaan lingkaran dengan pusat dan jari-jari adalah Sebagai contoh, persamaan lingkaran dengan pusat dan berjari-jari adalah . Sebaliknya, jika diberikan persamaan lingkaran dalam bentuk standar, kita bisa menentukan pusat dan jari-jari lingkarannya. Perhatikan persamaan lingkaran berikut Persamaan ini dapat ditulis sebagai Pusat lingkaran ditentukan dengan mengamati pengurang dari variabel dan , sedangkan jari-jari ditentukan dengan mengamati basis bilangan kuadrat pada ruas sebelahnya. Dalam hal ini, lingkaran di atas berpusat di titik dengan jari-jari . Jika persamaan lingkaran memuat penjumlahan, maka kita perlu mengubahnya dengan memanfaatkan sifat . Misalnya pada persamaan lingkaran berikut. Selanjutnya, kita akan membahas bentuk umum dari persamaan lingkaran. Bentuk Umum Persamaan Lingkaran Bentuk umum persamaan lingkaran diperoleh dari bentuk standar, dengan menentukan hasil ekspansi dari dan . Persamaan lingkaran yang berpusat di titik dengan jari-jari adalah Persamaan terakhir ini mempunyai bentuk untuk suatu bilangan real , , dan . Persamaan inilah yang disebut bentuk umum dari persamaan lingkaran. Sebagai contoh, kita akan menentukan bentuk umum dari persamaan lingkaran yang berpusat di dengan jari-jari . Kita mulai dengan bentuk standar persamaan lingkaran, yaitu Sebagai latihan, teman-teman bisa mencoba menentukan bentuk umum dari persamaan lingkaran yang berpusat di dengan jari-jari . Mengubah Bentuk Umum Menjadi Bentuk Standar Sebelumnya, kita telah mengubah bentuk standar persamaan lingkaran menjadi bentuk umum. Untuk melakukan hal sebaliknya, kita menggunakan teknik yang disebut Melengkapkan Bentuk Kuadrat. Sebagai contoh perhatikan persamaan lingkaran dalam bentuk umum berikut. Kita mulai mengelompokkan suku yang memuat variabel dan di ruas kiri dan konstanta di ruas kanan. Berikutnya kita akan melengkapkan bentuk kuadrat, dimulai dari . Koefisien pada ekspresi ini adalah . Tambahkan kedua ruas persamaan dengan kuadrat dari setengah koefisien , yaitu Diperoleh Lakukan hal yang sama . Koefisien pada ekspresi ini adalah . Tambahkan kedua ruas persamaan dengan kuadrat dari setengah koefisien , yaitu . Diperoleh Ubah menjadi bentuk kuadrat untuk memperoleh persamaan lingkaran dalam bentuk standar. Jika belum terbiasa melengkapkan bentuk kuadrat, maka prosedur di atas akan terasa cukup rumit. Karena itu, kita perlu banyak berlatih untuk mengingat prosedurnya. Contoh Soal Persamaan LingkaranNomor 1Tentukan persamaan lingkaran yang berpusat di titik dengan jari-jari . Tuliskan jawaban anda dalam bentuk lingkaran yang berpusat di titik $\textcolor{green}{1},\textcolor{blue}{3}$ dengan jari-jari $\textcolor{red}{5}$ adalah $$x-\textcolor{green}{1}^2 + y-\textcolor{blue}{3}^2 = \textcolor{red}{5}^2$$ Uraikan ruas kiri untuk mengubahnya menjadi bentuk umum. $$\begin{aligned} x^2-2x+1 \;+\; y^2-6y+9 &= 25 \\[2pt] x^2+y^2-2x-6y+1+9-25 &= 0 \\[2pt] x^2+y^2-2x-6y-15 &= 0 \end{aligned}$$ Jadi, bentuk umum dari persamaan lingkaran tersebut adalah $$x^2+y^2-2x-6y-15=0$$Nomor 2Tentukan bentuk umum dari persamaan lingkaran yang berpusat di titik dengan jari-jari .PembahasanBentuk umum persamaan lingkaran yang berpusat di titik $\textcolor{green}{-2},\textcolor{blue}{0}$ dengan jari-jari $\textcolor{red}{3}$ adalah $$\begin{aligned} x-\textcolor{green}{-2}^2 + y-\textcolor{blue}{0}^2 &= \textcolor{red}{3}^2 \\[2pt] x+2^2 + y^2 &= 1 \\[2pt] x^2+4x+4 \;+\; y^2 &= 1 \\[2pt] x^2+y^2+4x+4-1 &= 0 \\[2pt] x^2+y^2+4x+3 &= 0 \end{aligned}$$Nomor 3Tentukan bentuk umum dari persamaan lingkaran yang berpusat di titik dengan jari-jari .PembahasanBentuk umum persamaan lingkaran yang berpusat di titik $\textcolor{green}{4},\textcolor{blue}{1}$ dengan jari-jari $\textcolor{red}{\sqrt{7}}$ adalah $$\begin{aligned} x-\textcolor{green}{4}^2 + y-\textcolor{blue}{1}^2 &= \textcolor{red}{\sqrt{7}}^2 \\[2pt] x^2-8x+16 \;+\; y^2-2y+1 &= 7 \\[2pt] x^2+y^2-8x-2y+16+1-7 &= 0 \\[2pt] x^2+y^2-8x-2y+10 &= 0 \end{aligned}$$Nomor 4Tentukan persamaan lingkaran yang berpusat di titik dan melalui titik . Tuliskan jawaban anda dalam bentuk menentukan persamaan lingkaran, kita perlu titik pusat dan jari-jari lingkaran. Karena jari-jari belum diketahui, maka kita perlu mencarinya terlebih dahulu. Jari-jari lingkaran tersebut adalah jarak antara titik pusat $0,0$ dengan titik $6,8$ yang terletak pada lingkaran, yaitu $$\begin{aligned} r &= \sqrt{6-0^2+8-0^2} \\[2pt] &= \sqrt{6^2+8^2} \\[2pt] &= \sqrt{36+64} \\[2pt] &= \sqrt{100} \\[2pt] &= 10 \end{aligned}$$ Diperoleh jari-jari $10$. Persamaan lingkaran yang berpusat di titik $0,0$ dengan jari-jari $10$ adalah $$x^2+y^2=10^2 \quad \Longrightarrow \quad x^2+y^2 = 100$$Nomor 5Tentukan bentuk standar dari persamaan lingkaran yang berpusat di titik dan melalui titik .PembahasanKarena jari-jari lingkaran belum diketahui, maka kita perlu mencarinya terlebih dahulu. Jari-jari lingkaran tersebut adalah jarak antara titik pusat $1,3$ dengan titik $4,-1$ yang terletak pada lingkaran, yaitu $$\begin{aligned} r &= \sqrt{4-1^2+-1-3^2} \\[2pt] &= \sqrt{3^2+-4^2} \\[2pt] &= \sqrt{9+16} \\[2pt] &= \sqrt{25} \\[2pt] &= 5 \end{aligned}$$ Diperoleh jari-jari $5$. Persamaan lingkaran yang berpusat di titik $1,3$ dengan jari-jari $5$ adalah $$x-1^2+y-3^2 = 5^2 = 25$$Nomor 6Tentukan persamaan lingkaran yang berpusat di titik dan melalui titik . Tuliskan jawaban anda dalam bentuk jari-jari lingkaran belum diketahui, maka kita perlu mencarinya terlebih dahulu. Jari-jari lingkaran tersebut adalah jarak antara titik pusat $-2,5$ dengan titik $1,7$ yang terletak pada lingkaran, yaitu $$\begin{aligned} r &= \sqrt{1-2^2+7-5^2} \\[2pt] &= \sqrt{3^2+2^2} \\[2pt] &= \sqrt{9+4} \\[2pt] &= \sqrt{13} \end{aligned}$$ Diperoleh jari-jari $\sqrt{13}$. Persamaan lingkaran yang berpusat di titik $-2,5$ dengan jari-jari $\sqrt{13}$ adalah $$\begin{aligned} x-2^2+y-5^2 &= \sqrt{13}^2 \\[2pt] x+2^2 + y-5^2 &= 13 \end{aligned}$$ Karena yang diminta bentuk umum, maka kita perlu melanjutkan proses di atas. Bentuk umumnya adalah $$\begin{aligned} x^2+4x+4 \;+\; y^2-10y+25 &= 13 \\[2pt] x^2+y^2+4x-10y+4+25-13 &= 0 \\[2pt] x^2+y^2+4x-10y+16 &= 0 \end{aligned}$$Nomor 7Tentukan persamaan lingkaran yang mempunyai diameter dengan titik ujung dan . Tuliskan jawaban anda dalam bentuk perlu menentukan titik pusat dan jari-jarinya terlebih dahulu. Pusat lingkaran merupakan titik tengah dari kedua titik ujung diameter. Berdasarkan rumus titik tengah diperoleh $$\begin{aligned} h,k &= \left \frac{-4+2}{2}, \frac{11+3}{2} \right \\[2pt] &= \left \frac{-2}{2}, \frac{14}{2} \right \\[2pt] &= -1,7 \end{aligned}$$ Diameter lingkaran adalah jarak antara titik $2,3$ dengan $-4,11$, yaitu $$\begin{aligned} d &= \sqrt{-4-2^2+11-3^2} \\[2pt] &= \sqrt{-6^2+8^2} \\[2pt] &= \sqrt{36+64} \\[2pt] &= \sqrt{100} \\[2pt] &= 10 \end{aligned}$$ Karena panjang diameternya $10$, maka jari-jarinya adalah $5$. Persamaan lingkaran yang berpusat di titik $-1,7$ dengan jari-jari $5$ adalah $$\begin{aligned} x-1^2+y-7^2 &= 5^2 \\[2pt] x+1^2+y-7^2 &= 25 \end{aligned}$$Nomor 8Diketahui persamaan lingkaran dengan bentuk umum . Ubahlah menjadi bentuk mulai dengan mengelompokkan suku yang memuat variabel $x$ dan $y$ di ruas kiri, dan konstanta di ruas kanan. $$x^2-10x \qquad + y^2-2y \qquad = -10$$ Koefisien $x$ dan $y$ secara berturut-turut adalah $-10$ dan $-2$. Karena itu, kita perlu menambahkan kedua ruas dengan $$-5^2=25 \quad \text{dan} \quad -1^2=1$$ Diperoleh $$\begin{aligned} x^2-10x+25 + y^2-2y+1 &= -10+25+1 \\[2pt] x-5^2 + y-1^2 &= 16 \\[2pt] x-5^2 + y-1^2 &= 4^2 \end{aligned}$$ Dengan demikian, bentuk standar dari persamaan lingkaran tersebut adalah $$x-5^2 + y-1^2 = 4^2$$Nomor 9Diketahui persamaan lingkaran dengan bentuk umum . Ubahlah menjadi bentuk mulai dengan mengelompokkan suku yang memuat variabel $x$ dan $y$ di ruas kiri, dan konstanta di ruas kanan. $$x^2-6x \qquad + y^2 = -5$$ Suku yang memuat variabel $y$ sudah berbentuk kuadrat, sehingga kita hanya perlu mengubah bentuk $x^2-6x$. Karena koefisien $x$ adalah $-6$, sehingga kita perlu menambahkan $-3^2=9$ pada kedua ruas. Diperoleh $$\begin{aligned} x^2-6x+9 + y^2 &= -5 + 9 \\[2pt] x-3^2 + y^2 &= 4 \\[2pt] x-3^2 + y^2 &= 2^2 \end{aligned}$$ Dengan demikian, bentuk standar dari persamaan lingkaran tersebut adalah $$x-5^2 + y^2 = 2^2$$Nomor 10Tentukan pusat dan jari-jari lingkaran dengan persamaan PembahasanPersamaan lingkaran tersebut dapat dinyatakan sebagai $$x-\textcolor{green}{-2}^2 + y-\textcolor{blue}{3}^2 = \textcolor{red}{5}^2$$ Jadi, titik pusatnya adalah $\textcolor{green}{-2},\textcolor{blue}{3}$ dengan jari-jari $\textcolor{red}{5}$.Nomor 11Tentukan pusat dan jari-jari lingkaran dengan persamaan PembahasanPersamaan lingkaran tersebut dapat dinyatakan sebagai $$x-\textcolor{green}{0}^2 + y-\textcolor{blue}{1}^2 = \textcolor{red}{\sqrt{3}}^2$$ Jadi, titik pusatnya adalah $\textcolor{green}{0},\textcolor{blue}{1}$ dengan jari-jari $\textcolor{red}{\sqrt{3}}$.Nomor 12Tentukan pusat dan jari-jari lingkaran dengan persamaan PembahasanPertama, kita akan mengubah persamaan tersebut ke dalam bentuk standar. Perhatikan bahwa $$\begin{aligned} x^2 + y^2 + 4x + 10y + 4 &= 0 \\[2pt] x^2+4x \qquad + y^2+10y \qquad &= -4 \\[2pt] x^2+4x+4 + y^2+10y+25 &= -4+4+25 \\[2pt] x+2^2 + y+5^2 &= 25 \\[2pt] x-2^2 + y-5^2 &= 5^2 \end{aligned}$$ Dari persamaan di atas, bisa disimpulkan bahwa titik pusatnya adalah $-2,-5$ dengan jari-jari $5$.Nomor 13Tentukan pusat dan jari-jari lingkaran dengan persamaan PembahasanPertama, kita akan mengubah persamaan tersebut ke dalam bentuk standar. Perhatikan bahwa $$\begin{aligned} x^2 + y^2 - 14x + 8y + 53 &= 0 \\[2pt] x^2-14x \qquad + y^2+8y \qquad &= -53 \\[2pt] x^2-14x+49 + y^2+8y+16 &= -53+49+16 \\[2pt] x-7^2 + y+4^2 &= 12 \\[2pt] x-7^2 + y-4^2 &= \sqrt{12}^2 \end{aligned}$$ Dari persamaan di atas, bisa disimpulkan bahwa titik pusatnya adalah $7,-4$ dengan jari-jari $\sqrt{12}$. Referensi Aufmann, R. N., Barker, V. C., & Nation, R. D. 2011. College Algebra and Trigonometry 7th ed.. Brooks/Cole Cengage Learning. Riddle, D. F. 1996. Analytic Geometry 6th ed.. PWS Publishing Company.
Diketahui dua lingkaran dengan diameter berbeda. Jika jarak kedua pusat lingkaran tersebut adalah 15 cm, dan panjang garis singgung persekutuan luarnya adalah 12 cm, maka pasangan diameter lingkaran manakah yang sesuai dengan kedua lingkaran tersebut? Jawaban diketahui l = 12cm p = 15cm ditanya pasangan jari-jari yang sesuai = …? jawab l² = p² – R-r² R-r² = p² – l² R-r² = 15² – 12² = 225 – 144 = 81 R-r = √81 = 9 cm lihat pilgannya a. 12 cm dan 2 cm → 12 cm – 2 cm = 10 cm salah b. 12 cm dan 3 cm → 12 cm – 9 cm = 9 cm benar c. 24 cm dan 4 cm → 24 cm – 4 cm = 20 cm salah cm dan 5 cm → 24 cm – 5 cm = 19 cm salah jawaban untuk soal ini adalah 9 cm, yaitu pasangan 12 cm dan 3 cm jawaban B 73 total views, 1 views today
diketahui dua lingkaran berbeda dengan jarak